Subject No. 38 Flight Navigation General (Aeroplane \& Helicopter)

NOTE: This syllabus is primarily based on regional/oceanic/global IFR navigation as applicable to navigating a multi engine turbine air transport type aeroplane or IFR capable turbine Helicopter.

Each subject has been given a subject number and each topic within that subject a topic number. These reference numbers will be used on knowledge deficiency reports and will provide valuable feedback to the examination candidate. These reference numbers are common across the subject levels and therefore may not be consecutive.

This syllabus presupposes a knowledge and understanding already attained at PPL/CPL/IR level.

Sub Topic

Syllabus Item

Fundamentals of Air Navigation

$38.2 \quad$ Form of the Earth

38.2.2 Define and identify, on a diagram of the earth:
(a) great circles
(b) small circles
(c) rhumb lines
(d) the equator
(e) parallels of latitude
(f) meridians of longitude
(g) Greenwich (Prime) Meridian
(h) the International Date Line.

38.4 Direction on the Earth

38.4.2 Define, with reference to navigation at higher latitudes and polar areas:
(a) magnetic pole
(b) true north
(c) magnetic north
(d) compass north.
38.4.4 Explain the processes, cautions and limitations when deriving track distances and bearings from a chart, with particular reference to navigation at higher latitudes and polar areas.

38.6 Distance on the Earth

38.6.2 Define units of distance used on aviation charts and the basis for these units.
38.6.4 Explain the distance calculation basis used by GNSS and FMC systems.

Sub Topic

38.6.6
38.8
38.8 .2
38.8.4
38.8.6
38.10
38.10 .2
38.10 .4
38.10 .6
38.12
38.12.2
38.12.4
38.12 .6
38.12 .8
38.12.10
38.16
38.16.2 Explain the relationship between time and longitude.
38.16.4 Convert between arc and time.
$38.20 \quad$ Visibility
38.20.2 Define:
(a) visibility
(b) visual range
(c) slant range
(d) runway visual range (RVR).
38.20.4
38.20 .6

Syllabus Item

Determine distances ($\pm 3 \mathrm{~nm}$) on an appropriate oceanic navigational chart.

Speed and velocity

Define Mach number and associated computational formulae. system. temperature and air density.

Position Referencing

Describe the grid system position reference method.
Describe the reference system used by a GNSS navigation system.
Plot and reference a position ($\pm 3 \mathrm{~nm}$) on appropriate oceanic chart.

Altimetry

State the altimeter setting rules in oceanic airspace.
Explain the table of cruising levels and the application in oceanic airspace.
Explain the transition procedures between oceanic and domestic cruising levels. (ISA).

State the change in temperature with altitude in the Jet Standard Atmosphere (JSA).

Time

Explain the factors which affect visibility and visual range.
Describe how visual range is determined from an aircraft in flight and by ground

State the frame of reference for speed measurement provided by a GNSS and inertial

Explain how TAS and mach number are affected by changes in pressure altitude, air

State the change in temperature with altitude in the International Standard Atmosphere stations.

Sub Topic Syllabus Item

38.22
38.22 .2
38.22 .4
38.22 .6
38.22 .8
38.22 .10
38.22.12
38.22.14
38.22.16
38.24 .2
38.24.4
38.24 .6
38.24.8
38.26
38.26.2
38.26 .4
38.28
38.28.2 Derive TAS, given Mach number and air temperature in degrees Celsius.
38.28.4 Calculate groundspeed given Mach number, wind component and air temperature in degrees Celsius.
38.28 .6
38.28.8 Derive TAS, given a Compressibility Correction Table, CAS, pressure altitude/flight level and air temperature in degrees Celsius.

Sub Topic

Syllabus Item
38.28.10 Calculate the equivalent still air distance, given total distance, mean TAS and mean wind component.
38.30 Relative Velocity
38.30 .2
38.30.4 Calculate the distance between two aircraft when they are 10 minutes apart on the same track.
38.30.6 Calculate the time that two aircraft will be 10 minutes apart on the same track.
38.30.8 Calculate the position of an aircraft along track when a following aircraft is 10 minutes behind it on the same track.
38.30.10 Calculate the time of passing of two aircraft on the same track, given relative positions and speeds.
38.30.12 Define line of constant bearing.
38.30.14 Calculate the distance two aircraft on diverging/converging tracks are apart at a given time.
38.30.16 Calculate the true, magnetic or relative bearing between two aircraft on diverging/converging tracks at a given time.
38.30.18 Determine whether the relative bearing between two aircraft on diverging/converging tracks will remain constant.

$38.34 \quad$ Triangle of Velocities

38.34.2 Solve triangle of velocity problems (given four of the six variables):
(a) heading and track $\left(\pm 2^{\circ}\right)$
(b) TAS and GS ($\pm 2 \mathrm{kts}$)
(c) wind velocity $\left(\pm 3^{\circ} / \pm 2 \mathrm{kts}\right)$
(d) $\operatorname{drift}\left(\pm 1^{\circ}\right)$.

Navigation Procedures - IFR

Plotting
38.54.2 Plot and measure the initial great circle track between two points, in true and magnetic, on an oceanic chart.
38.58 .2

38.58 En-route Diversion Calculations

Calculate, considering normal operations, depressurised and engine out scenarios:
(a) time and distance to the PNR
(b) time and distance to the ETP between two aerodromes on a track

Sub Topic

38.58 .4
38.58 .6
38.58 .8
38.60
38.60 .2
38.60 .4
38.60 .6
38.60 .8
38.60.10
38.60.12
38.60.14
38.60.16
38.70
38.70 .2
38.70 .4
38.70.6 Explain the precautions to be taken managing the GNSS, autopilot and crew interfaces.
38.70 .8
38.70.10 Explain Differential Global Positioning System (DGPS).

